Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.469
Filtrar
1.
Nat Commun ; 15(1): 1969, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443434

RESUMO

Natural fruits contain a large variety of cis-diols. However, due to the lack of a high-resolution sensor that can simultaneously identify all cis-diols without a need of complex sample pretreatment, direct and rapid analysis of fruits in a hand-held device has never been previously reported. Nanopore, a versatile single molecule sensor, can be specially engineered to perform this task. A hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore modified with a sole phenylboronic acid (PBA) adapter is prepared. This engineered MspA accurately recognizes 1,2-diphenols, alditols, α-hydroxy acids and saccharides in prune, grape, lemon, different varieties of kiwifruits and commercial juice products. Assisted with a custom machine learning program, an accuracy of 99.3% is reported and the sample pretreatment is significantly simplified. Enantiomers such as DL-malic acids can also be directly identified, enabling sensing of synthetic food additives. Though demonstrated with fruits, these results suggest wide applications of nanopore in food and drug administration uses.


Assuntos
Citrus , Nanoporos , Estados Unidos , Frutas , Álcoois Açúcares , Ácidos Carboxílicos , Mycobacterium smegmatis , Porinas
2.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542352

RESUMO

Previously, we found for the first time the participation of osmolytes in adaptation to acidic conditions in three acidophilic fungi. Because trehalose can protect membranes, we hypothesized a relationship between osmolyte and membrane systems in adaptation to stressors. In the mycelium of Phlebiopsis gigantea, the level of osmolytes reaches 8% of the dry mass, while trehalose and arabitol make up 60% and 33% of the sum, respectively. Cold shock does not change the composition of osmolytes, heat shock causes a twofold increase in the trehalose level, and osmotic shock leads to a marked increase in the amount of trehalose and arabitol. Predominance of phospholipids (89% of the sum) and low proportions of sterols and sphingolipids are characteristic features of the membrane lipids' composition. Phosphatidic acids, along with phosphatidylethanolamines and phosphatidylcholines, are the main membrane lipids. The composition of the membrane lipids remains constant under all shocks. The predominance of linoleic (75% of the sum) and palmitic (20%) acids in phospholipids results in a high degree of unsaturation (1.5). Minor fluctuations in the fatty acid composition are observed under all shocks. The results demonstrate that maintaining or increasing the trehalose level provides stability in the membrane lipid composition during adaptation.


Assuntos
Basidiomycota , Lipídeos de Membrana , Polyporales , Álcoois Açúcares , Trealose , Pressão Osmótica , Fosfolipídeos
3.
Am J Trop Med Hyg ; 110(4_Suppl): 44-53, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38471168

RESUMO

In regions where malaria transmission persists, the implementation of approaches aimed at eliminating parasites from the population can effectively decrease both burden of disease and transmission of infection. Thus, mass strategies that target symptomatic and asymptomatic infections at the same time may help countries to reduce transmission. This systematic review assessed the potential benefits and harms of mass testing and treatment (MTaT) to reduce malaria transmission. Searches were conducted in March 2021 and updated in April 2022 and included cluster-randomized controlled trials (cRCTs) as well as nonrandomized studies (NRSs) using malaria infection incidence, clinical malaria incidence, or prevalence as outcomes. The risk of bias was assessed with Cochrane's risk of bias (RoB2) tool and Risk of Bias Tool in Nonrandomized Studies - of Interventions (ROBINS-I), and the certainty of evidence (CoE) was graded for each outcome. Of 4,462 citations identified, seven studies (four cRCTs and three NRSs) contributed outcome data. The analysis revealed that MTaT did not reduce the incidence (risk ratio [RR]: 0.95, 95% CI: 0.87-1.04; 1,181 participants; moderate CoE) or prevalence (RR: 0.83, 95% CI: 0.67-1.01; 7,522 participants; moderate CoE) of malaria infection but resulted in a small reduction in clinical malaria (RR: 0.82; 95% CI: 0.70-0.95; 334,944 participants; moderate CoE). Three studies contributing data on contextual factors concluded that MTaT is an acceptable, feasible, and cost-effective intervention. Mathematical modeling analyses (n = 10) suggested that MTaT effectiveness depends on the baseline transmission level, diagnostic test performance, number of rounds, and other co-interventions. Based on the limited evidence available, MTaT has little to no impact on reducing malaria transmission.


Assuntos
Malária , Álcoois Açúcares , Humanos , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia , Prevalência , Incidência , Viés
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473992

RESUMO

Multi-enzymatic strategies have shown improvement in bioconversion during cofactor regeneration. In this study, purified l-arabinitol 4-dehydrogenase (LAD) and nicotinamide adenine dinucleotide oxidase (Nox) were immobilized via individual, mixed, and sequential co-immobilization approaches on magnetic nanoparticles, and were evaluated to enhance the conversion of l-arabinitol to l-xylulose. Initially, the immobilization of LAD or Nox on the nanoparticles resulted in a maximum immobilization yield and relative activity of 91.4% and 98.8%, respectively. The immobilized enzymes showed better pH and temperature profiles than the corresponding free enzymes. Furthermore, co-immobilization of these enzymes via mixed and sequential methods resulted in high loadings of 114 and 122 mg/g of support, respectively. Sequential co-immobilization of these enzymes proved more beneficial for higher conversion than mixed co-immobilization because of better retaining Nox residual activity. Sequentially co-immobilized enzymes showed a high relative conversion yield with broader pH, temperature, and storage stability profiles than the controls, along with high reusability. To the best of our knowledge, this is the first report on the mixed or sequential co-immobilization of LAD and Nox on magnetic nanoparticles for l-xylulose production. This finding suggests that selecting a sequential co-immobilization strategy is more beneficial than using individual or mixed co-immobilized enzymes on magnetic nanoparticles for enhancing conversion applications.


Assuntos
Enzimas Imobilizadas , Nanopartículas de Magnetita , Álcoois Açúcares , Enzimas Imobilizadas/metabolismo , Xilulose , Temperatura , Concentração de Íons de Hidrogênio , Estabilidade Enzimática
5.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474585

RESUMO

Ribitol (C5H12O5) is an acyclic sugar alcohol that was recently identified in O-mannose glycan on mammalian α-dystroglycan. The conformation and dynamics of acyclic sugar alcohols such as ribitol are dependent on the stereochemistry of the hydroxyl groups; however, the dynamics are not fully understood. To gain insights into the conformation and dynamics of sugar alcohols, we carried out comparative analyses of ribitol, d-arabitol and xylitol by a crystal structure database search, solution NMR analysis and molecular dynamics (MD) simulations. The crystal structures of the sugar alcohols showed a limited number of conformations, suggesting that only certain stable conformations are prevalent among all possible conformations. The three-bond scholar coupling constants and exchange rates of hydroxyl protons were measured to obtain information on the backbone torsion angle and possible hydrogen bonding of each hydroxyl group. The 100 ns MD simulations indicate that the ribitol backbone has frequent conformational transitions with torsion angles between 180∘ and ±60∘, while d-arabitol and xylitol showed fewer conformational transitions. Taking our experimental and computational data together, it can be concluded that ribitol is more flexible than d-arabitol or xylitol, and the flexibility is at least in part defined by the configuration of the OH groups, which may form intramolecular hydrogen bonds.


Assuntos
Ribitol , Xilitol , Simulação de Dinâmica Molecular , Álcoois Açúcares
6.
Methods Mol Biol ; 2763: 209-221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347413

RESUMO

Acidic O-glycans having sialic acid and/or sulfate residue are abundantly expressed in intestinal mucins. However, structural elucidation of acidic O-glycans is a laborious and time-consuming task due to their large structural variations. Here, we describe a methodology of structural elucidation for sialylated O-glycan alditols from intestinal mucins using tandem mass spectroscopy. Methylesterification and mild periodate oxidation of sialylated O-glycan alditols assist mass analysis. This description includes the purification process of O-glycan alditols for structural analysis.


Assuntos
Mucinas , Álcoois Açúcares , Mucinas/química , Álcoois Açúcares/análise , Polissacarídeos/química , Intestinos/química , Espectrometria de Massas em Tandem
7.
Carbohydr Polym ; 330: 121785, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368080

RESUMO

The relationship between the fine structure of starch and its gelatinization properties is not well studied, particularly in relation to the influence of sugar or sugar alcohol. In this study, seven starches with distinct molecular structures were investigated to determine how different sugars and sugar alcohols affect their gelatinization properties. The inclusion of sugars and sugar alcohols resulted in a significant elevation of starch gelatinization temperatures (∼ 8 °C), especially with sucrose, isomaltose and isomalt. Nevertheless, the influence of these sugars/ sugar alcohols on the gelatinization temperature range and enthalpy change varied depending on the particular starch varieties. According to the correlation analysis, sugars and sugar alcohols mainly exert their impact on the starch gelatinization temperature range and enthalpy change by possibly interacting with amylose chains possessing a degree of polymerization ranging from 100 to 1000 (p < 0.05) and inhibiting the amylose leaching during gelatinization. These findings help a better understanding of the complex relationship between starch fine structure and gelatinization properties under the influence of sugars and sugar alcohols.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Estrutura Molecular , Álcoois Açúcares , Açúcares , Amilopectina/química
8.
J Sci Food Agric ; 104(6): 3749-3756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234140

RESUMO

BACKGROUND: Laboratory scale experiments have shown that curdlan and gellan gum gelled together as curdlan/gellan gum (CG) hybrid gels showed better gel properties than the individual curdlan and gellan gum. In this study, CG and black wolfberry anthocyanin (BWA), CG and maltitol (ML) hybrid gels were constructed using CG hybrid gel as matrix. The effects of BWA or ML on the gel properties and microstructure of CG hybrid gels were investigated and a confectionery gel was developed. RESULTS: The presence of BWA increased the storage modulus (G') value of CG at 0.1 Hz, whereas ML had little effect on the G' value of CG. The addition of BWA (5 g L-1 ) and ML (0.3 mol L-1 ) increased the melting and gelling temperatures of CG hybrid gels to 42.4 °C and 34.1 °C and 44.2 °C and 33.2 °C, respectively. Meanwhile, the relaxation time T22 in CG-ML and CG-BWA hybrid gels was reduced to 91.96 and 410.27 ms, indicating the strong binding between BWA and CG, ML and CG. The hydrogen bond interaction between BWA or ML and CG was confirmed by the shift in the hydroxyl stretching vibration peak. Moreover, the microstructures of CG-ML and CG-BWA hybrid gels were denser than that of CG. In addition, confectionery gel containing CG-BWA-ML has good chewing properties. CONCLUSION: These results indicated that the incorporation of BWA or ML could improve the structure of CG hybrid gels and assign a sustainability potential for the development of confectionery gels based on CG complex. © 2024 Society of Chemical Industry.


Assuntos
Lycium , Maltose/análogos & derivados , Álcoois Açúcares , beta-Glucanas , Antocianinas , Polissacarídeos Bacterianos/química , Géis/química , Reologia
9.
Appl Microbiol Biotechnol ; 108(1): 61, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183484

RESUMO

Alditol oxidases are promising tools for the biocatalytic oxidation of glycerol to more valuable chemicals. By integrating in silico bioprospecting with cell-free protein synthesis and activity screening, an effective pipeline was developed to rapidly identify enzymes that are active on glycerol. Three thermostable alditol oxidases from Actinobacteria Bacterium, Streptomyces thermoviolaceus, and Thermostaphylospora chromogena active on glycerol were discovered. The characterization of these three flavoenzymes demonstrated their glycerol oxidation activities, preference for alkaline conditions, and excellent thermostabilities with melting temperatures higher than 75 °C. Structural elucidation of the alditol oxidase from Actinobacteria Bacterium highlighted a constellation of side chains that engage the substrate through several hydrogen bonds, a histidine residue covalently bound to the FAD prosthetic group, and a tunnel leading to the active site. Upon computational simulations of substrate binding, a double mutant targeting a residue pair at the tunnel entrance was created and found to display an improved thermal stability and catalytic efficiency for glycerol oxidation. The hereby described alditol oxidases form a valuable panel of oxidative biocatalysts that can perform regioselective oxidation of glycerol and other polyols. KEY POINTS: • Rapid pipeline designed to identify putative oxidases • Biochemical and structural characterization of alditol oxidases • Glycerol oxidation to more valuable derivatives.


Assuntos
Glicerol , Álcoois Açúcares , Biocatálise , Bioprospecção , Catálise
10.
Oxid Med Cell Longev ; 2024: 7944378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38268969

RESUMO

Chaga mushroom (Inonotus obliquus) contains bioactive metabolites and has been used to treat various ailments, including cancer. Similarly, marine microalgae are considered a sustainable food supplement with anticancer and antioxidant properties. This study investigated the cytotoxicity of different extracts prepared from I. obliquus and microalgae using cultured human and canine cancer cell lines (MCF-7, HepG2, HOS, D-17, and DH-82). MTS cell viability assay was used to study the cytotoxicity of I. obliquus and microalgae extracts, and a synergy matrix effect was used to study the combined effect of the extracts. Isobologram analysis and the highest single agent synergy model were applied to study and validate the synergy between the extracts from I. obliquus and microalgae. Ethanol-based extraction and supercritical water extract significantly inhibited the growth of various mammalian cancer cells compared to aqueous extracts. Osteosarcoma cells were more susceptible to the supercritical extracts of I. obliquus and chlorophyll-free and sugar-free ethanol extracts of microalgae. A combination of ethanol-based I. obliquus extract and chlorophyll-free microalgae extract resulted in a synergistic interaction with various tested cancer cells. This study provides experimental evidence supporting the potential therapeutic application of I. obliquus and microalgae extracts with a synergistic effect to inhibit the growth of various mammalian cancer cells. Additional in vivo studies are required to fully explore possible therapeutic applications of these unique mixtures to be used in treating cancers.


Assuntos
Neoplasias Ósseas , Microalgas , Humanos , Animais , Cães , Inonotus , Clorofila , Etanol , Mamíferos , Álcoois Açúcares , Água
11.
Bioorg Med Chem ; 99: 117563, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215623

RESUMO

A series of 1H-imidazo [4,5-f][1,10] phenanthroline derivatives functionalized at 2-position with chiral, and conformationally flexible polyhydroxy alkyl chains derived from carbohydrates (alditol-based imidazophenanthrolines, aldo-IPs) is presented herein. These novel glycomimetics showed relevant and differential cytotoxic activity against several cultured tumor cell lines (PC3, HeLa and HT-29), dependent on the nature and stereochemistry of the polyhydroxy alkyl chain. The mannose-based aldo-IP demonstrated the higher cytotoxicity in the series, substantially better than cisplatin metallo-drug in all cell lines tested, and better than G-quadruplex ligand 360A in HeLa and HT29 cells. Cell cycle experiments and Annexin V-PI assays revealed that aldo-IPs induce apoptosis in HeLa cells. Initial study of DNA interactions by DNA FRET melting assays proved that the aldo-IPs produce only a slight thermal stabilization of DNA secondary structures, more pronounced in the case of quadruplex DNA. Viscosity titrations with CT dsDNA suggest that the compounds behave as DNA groove binders, whereas equilibrium dialysis assays showed that the compounds bind CT with Ka values in the range 104-105 M-1. The aldo-IP derivatives were obtained with synthetically useful yields through a feasible one-pot multistep process, by aerobic oxidative cyclization of 1,10-phenanthroline-5,6-diamine with a selection of unprotected aldoses using (NH4)2SO4 as promoter.


Assuntos
Antineoplásicos , Álcoois Açúcares , Humanos , Células HeLa , Álcoois Açúcares/farmacologia , Antineoplásicos/química , Apoptose , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais
12.
Bioresour Technol ; 393: 130162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065516

RESUMO

Biosynthesis of D-arabitol, a high value-added platform chemical, from renewable carbon sources provides a sustainable and eco-friendly alternative to the chemical industry. Here, a robust brewing yeast, Zygosaccharomyces rouxii, capable of naturally producing D-arabitol was rewired through genome sequencing-based metabolic engineering. The recombinant Z. rouxii obtained by reinforcing the native D-xylulose pathway, improving reductive power of the rate-limiting step, and inhibiting the shunt pathway, produced 73.61% higher D-arabitol than the parent strain. Subsequently, optimization of the fermentation medium composition for the engineered strain provided 137.36 g/L D-arabitol, with a productivity of 0.64 g/L/h in a fed-batch experiment. Finally, the downstream separation of D-arabitol from the complex fermentation broth using an ethanol precipitation method provided a purity of 96.53%. This study highlights the importance of D-xylulose pathway modification in D-arabitol biosynthesis, and pave a complete and efficient way for the sustainable manufacturing of this value-added compound from biosynthesis to preparation.


Assuntos
Saccharomycetales , Xilulose , Zygosaccharomyces , Xilulose/metabolismo , Glucose/metabolismo , Álcoois Açúcares/metabolismo , Fermentação , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo
13.
Sci Rep ; 13(1): 18221, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880311

RESUMO

Exploring novel sources of plant protein for nutrition of both humans and animals is motivated mainly by its growing demand worldwide, besides identifying healthy alternatives for animal protein. The present study evaluates metabolome diversity within 15 legume seed species. The examined samples comprised three Melilotus, four Medicago, four Trifolium, and four Ononis seed species. A holistic approach for metabolites profiling using gas chromatography-mass spectrometry (GC-MS) led to the annotation and quantification of 87 metabolites comprising alcohols, free amino acids, aromatics, fatty acids/esters, nitrogenous compounds, organic acids, sugar alcohols, sugars, terpenes, and steroids. Fatty acids represented the major metabolite class represented by palmitic, stearic, oleic, linoleic, and linolenic acids. Sucrose and pinitol were the major sugars and sugar alcohols among seeds. Ononis seeds (OR, OS and OA) were the most abundant in fatty acids, sugars, sugar alcohols, and free amino acids, whereas Melilotus species (MO and MS) were least enriched in these key nutrients posing Ononis as potential food source for humans and animals. The examined seeds were generally low in sulfur-containing free amino acids and lacking many of the essential free amino acids. Multivariate data analysis aided in the identification of Ononis metabolite markers belonging to various classes i.e., (alcohol) glycerol, (sugar) allofuranose, and (sugar alcohol) pinitol, although the differentiation between Medicago, Melilotus, and Trifolium genera was not attained suggestive for other analytical platforms for its classification.


Assuntos
Melilotus , Ononis , Trifolium , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ononis/metabolismo , Melilotus/metabolismo , Trifolium/metabolismo , Medicago , Quimiometria , Ácidos Graxos/metabolismo , Álcoois/metabolismo , Açúcares/metabolismo , Álcoois Açúcares/metabolismo , Aminoácidos/metabolismo , Sementes/metabolismo , Nutrientes/análise
14.
Int J Biol Macromol ; 253(Pt 6): 127316, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37820913

RESUMO

Cellulose nanocrystals (CNC) have gained widespread attention in intelligent food packaging because of their iridescent optical properties. Here, we report a CNC composite film employing CNC, sugar alcohols (e.g., maltol, erythritol, mannitol, sorbitol, and xylitol) and natural pigment anthocyanins, which has a special iridescent color that can be used as a pH and humidity sensor. The effects of five sugar alcohols with different addition ratios on the structural, optical, and mechanical properties of the CNC films were investigated. The results demonstrated that the addition of sugar alcohol made composite films exhibiting a red-shift of λmax, a more uniform color in visual observation, and a larger pitch. Among them, the CNC-mannitol composite film with a ratio of 10:1 exhibited the best mechanical properties, possessing a tensile stress strength of 57 MPa and toughness of 137 J/m3. Subsequently, anthocyanins were incorporated to this composite film, which showed a marked color change along with the pH from 2 to 12 and exhibited a reversible color change from red to transparent upon a relative humidity change from 35 % to 85 %. Overall, such multi-environment-responsive iridescent films with excellent mechanical properties have a great potential for use in intelligent food packaging applications.


Assuntos
Antocianinas , Nanopartículas , Celulose/química , Álcoois Açúcares , Umidade , Nanopartículas/química , Manitol , Concentração de Íons de Hidrogênio
15.
Bioengineered ; 14(1): 2250950, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655550

RESUMO

Bioethanol is a renewable fuel widely used in road transportation and is generally regarded as a clean energy source. Although fermentation is one of the major processes in bioethanol production, studies on improving its efficiency through operational design are limited, especially compared to other steps (pretreatment and hydrolysis/saccharification). In this study, two adapted feeding strategies, in which feed medium addition (sugar delivery) was adjusted to increase the supply of fermentable sugar, were developed to improve ethanol productivity in 5-L fed-batch fermentation by Saccharomyces cerevisiae. Specifically, a linear adapted feeding strategy was established based on changes in cell biomass, and an exponential adapted feeding strategy was developed based on cell biomass accumulation. By implementing these two feeding strategies, the overall ethanol productivity reached 0.88±0.04 and 0.87±0.06 g/L/h, respectively. This corresponded to ~20% increases in ethanol productivity compared to fixed pulsed feeding operations. Additionally, there was no residual glucose at the end of fermentation, and final ethanol content reached 95±3 g/L under the linear adapted operation and 104±3 g/L under the exponential adapted feeding strategy. No statistical difference was observed in the overall ethanol yield (ethanol-to-sugar ratio) between fixed and adapted feeding strategies (~91%). These results demonstrate that sugar delivery controlled by adapted feeding strategies was more efficient than fixed feeding operations, leading to higher ethanol productivity. Overall, this study provides novel adapted feeding strategies to improve sugar delivery and ethanol productivity. Integration into the current practices of the ethanol industry could improve productivity and reduce production costs of fermentation processes.


Assuntos
Glucose , Açúcares , Fermentação , Álcoois Açúcares , Etanol , Saccharomyces cerevisiae
16.
Molecules ; 28(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764370

RESUMO

Most of the world's annual production of mannitol is by chemical means, but, due to increasing demand for natural sweeteners, alternative production methods are being sought. The aim of the study was to screen Yarrowia lipolytica yeast strains and select culture conditions for the efficient and selective biosynthesis of mannitol from glycerol. From 21 strains examined in the shake-flask culture for mannitol biosynthesis from glycerol (100 g/L), three strains were selected-S2, S3, and S4-and further evaluated in batch bioreactor cultures with technical and raw glycerol (150 g/L). The best production parameters were observed for strain S3, which additionally was found to be the most resistant to NaCl concentration. Next, strain S3 was examined in batch culture with regard to the initial glycerol concentration (from 50 to 250 g/L). It was found that the substrate concentrations of 50 and 75 g/L resulted in the highest mannitol selectivity, about 70%. The fed-batch culture system proposed in this paper (performed in two variants in which glycerol was dosed in four portions of about 50 or 75 g/L) resulted in increased mannitol production, up to 78.5 g/L.


Assuntos
Glicerol , Yarrowia , Álcoois Açúcares , Edulcorantes , Manitol , Excipientes
17.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569590

RESUMO

Drought stress is a major threat to sustainable crop production worldwide. Despite the positive role of calcium (Ca2+) in improving plant drought tolerance in different crops, little attention has been paid to its role in mitigating drought stress in potatoes. In the present study, we studied the effect of foliar chelated sugar alcohol calcium treatments on two potato cultivars with different drought responses applied 15 and 30 days after limiting soil moisture. The results showed that the foliar application of calcium treatments alleviated the SPAD chlorophyll loss of the drought-sensitive cultivar 'Atlantic' (Atl) and reduced the inhibition of photosynthetic parameters, leaf anatomy deformation, and MDA and H2O2 content of both cultivars under drought stress. The Ca2+ treatments changed the expression of several Calcium-Dependent Protein Kinase (StCDPK) genes involved in calcium sensing and signaling and significantly increased antioxidant enzyme activities, average tuber weight per plant, and tuber quality of both cultivars. We conclude that calcium spray treatments improved the drought tolerance of both potato cultivars and were especially effective for the drought-sensitive cultivar. The present work suggests that the foliar application of calcium is a promising strategy to improve commercial potato yields and the economic efficiency of potato production under drought stress conditions.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Cálcio/metabolismo , Secas , Álcoois Açúcares/farmacologia , Peróxido de Hidrogênio/metabolismo , Fotossíntese
18.
Colloids Surf B Biointerfaces ; 228: 113426, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399694

RESUMO

This study aimed to prepare single-component LNPs with sugar alcohol fatty acid monoesters for temperature-controlled release. In total, 20 kinds of lipids with a series of sugar alcohol head groups (ethylene glycol, glycerol, erythritol, xylitol and sorbitol) and fatty acyl tails (12:0, 14:0, 16:0 and 18:0) were synthesised via lipase-catalysed esterification. Their physicochemical properties and upper/lower critical solution temperature (LCST/USCT) were analysed. Two groups of mixed lipids, 78 % ethylene glycol lauric acid monoester + 22 % sorbitol stearic acid monoester (LNP-1) and 90 % ethylene glycol lauric acid monoester + 10 % xylitol myristic acid monoester (LNP-2), had LCST/USCT of approximately 37 °C, which formed empty LNPs using the emulsification-diffusion method. These two mixed lipids were prepared for LNPs loaded with curcumin, showing high encapsulation (>90 %), mean particle sizes of approximately 250 nm and low polydispersity index (≤0.2). These lipids have the potential for tailor-made LNPs achieving thermo-responsivity in delivering bioactive agents and drugs.


Assuntos
Ácidos Graxos , Nanopartículas , Álcoois Açúcares , Preparações de Ação Retardada , Xilitol , Temperatura , Nanopartículas/química , Sorbitol , Etilenoglicóis , RNA Interferente Pequeno/química
19.
Food Chem ; 421: 136132, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37094396

RESUMO

Bixin has desirable bioactivities but poor water solubility, which limits its practical applications. Enzymatic transesterification of methyl to alditol groups in bixin by Candida antarctica lipase B (CALB) improves bixin water solubility. Herein, magnetic CALB nanoreactors with diameter of 11.7 nm and CALB layer thickness of 3.5 nm were developed by covalently linking CALB onto silicon covered Fe3O4 nanoparticles. The CALB loading capacity in nanoreactors achieved 30%. The Michaelis constant (Km) and maximum reaction rate of magnetic CALB nanoreactors were 56.1 mmol/L and 0.2 mmol/(L·min). Magnetic CALB nanoreactors could circularly catalyze bixin-maltitol ester synthesis and keep catalytic efficiency of 62.6% after eight repetitive enzymatic reactions. Additionally, the optimal bixin-maltitol ester synthesis procedure was heating bixin-maltitol mixture at molar ratio of 1:7 in anhydrous 2-methyl-2-butanol-dimethylsulfoxide (8:2, v/v) at 50 °C for 24 h. Bixin-maltitol ester showed improved water solubility at pH 5.5 and 7.0.


Assuntos
Enzimas Imobilizadas , Ésteres , Candida , Proteínas Fúngicas , Álcoois Açúcares , Nanotecnologia , Fenômenos Magnéticos , Água
20.
Biomater Adv ; 148: 213345, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889229

RESUMO

Bacterial cellulose (BC) exhibits beneficial properties for use in biomedical applications but is limited by its lack of tunable transparency capabilities. To overcome this deficiency, a novel method to synthesize transparent BC materials using an alternative carbon source, namely arabitol, was developed. Characterization of the BC pellicles was performed for yield, transparency, surface morphology, and molecular assembly. Transparent BC was produced using mixtures of glucose and arabitol. Zero percent arabitol pellicles exhibited 25% light transmittance, which increased with increasing arabitol concentration through to 75% light transmittance. While transparency increased, overall BC yield was maintained indicating that the altered transparency may be induced on a micro-scale rather than a macro-scale. Significant differences in fiber diameter and the presence of aromatic signatures were observed. Overall, this research outlines methods for producing BC with tunable optical transparency, while also bringing new insight to insoluble components of exopolymers produced by Komagataeibacter hansenii.


Assuntos
Acetobacteraceae , Celulose , Acetobacteraceae/química , Álcoois Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...